
The Logistic Genetic Project

Ivan Scotti, ivan.scotti@inrae.fr; François Lefèvre, francois.lefevre.2@inrae.fr

2023-07-25

R Markdown

This is an R Markdown document. Markdown is a simple formatting syntax for authoring HTML, PDF,
and MS Word documents. For more details on using R Markdown see http://rmarkdown.rstudio.com.

When you click the Knit button a document will be generated that includes both content as well as the
output of any embedded R code chunks within the document.

The Evolutionary Resilience Project

This code is the workhorse of the Evolutionary Resilience Project, an open-ended research programme aiming
at the study of the population-genetic bases of resilience.

The sections of the document follow the development of the simulation mechanism, from the simplest model
to increasingly complex ones. Each model is comprised within one chunk code, usually followed by plotting
chunks.

So, when you scroll down you follow, somehow, the history of model development, and the document is both
a code source and a log-book.

The following chunk contains the original script from multilogistic.R

#setwd("D:/homeD/flefevre/TEXTE/equipe/BioPopEvol/resilience_Ivan")

matrice des effectifs, initialisation
N<-data.frame("generation"=0, "N1"=1, "N2"=1, "N3"=1, "Ntot"=3)

vecteur des parametres (ri: repro; si: survie)
P<-c("K"=100, "r1"=1, "r2"=0.8, "r3"=0.6, "s1"=0.1, "s2"=0.5, "s3"=0.8)

date de la perturbation
t0<-15

debut incrementation
pre-perturbation
for(t in 1:t0) {

Nt<-N[dim(N)[1],2:4]*(1+(P[2:4]*(P[1]-N[dim(N)[1],5])/P[1]))
N<-rbind(N,NA)
N[dim(N)[1],]<-c(t,Nt,sum(Nt))

}
perturbation
Nt0<-N[dim(N)[1],2:4]*P[5:7]

1

mailto:ivan.scotti@inrae.fr
mailto:francois.lefevre.2@inrae.fr
http://rmarkdown.rstudio.com

N<-rbind(N,NA)
N[dim(N)[1],]<-c(t0,Nt0,sum(Nt0))
post-perturbation
for(t in (t0+1):(t0+20)) {

Nt<-N[dim(N)[1],2:4]*(1+(P[2:4]*(P[1]-N[dim(N)[1],5])/P[1]))
N<-rbind(N,NA)
N[dim(N)[1],]<-c(t,Nt,sum(Nt))

}
fin incrementation

plot
plot(Ntot~generation,data=N,type="l", ylab="effectif", ylim=c(0,P[1]))
lines(N$generation,N$N1,col="blue")
lines(N$generation,N$N2,col="green")
lines(N$generation,N$N3,col="red")
abline(h=P[1],lty=2)

0 5 10 15 20 25 30 35

0
20

40
60

80
10

0

generation

ef
fe

ct
if

Next chunk: same as above, but with a new arbitrary “tick” (NB the word “tick” indicates an arbitrary step
in time; the term is used for analogy with SLiM), which is a fraction of the “generation” above (say, 1/100
of a generation). The mortality and reproduction rates are divided accordingly, and the result should be
numerically the same, but over a longer “time frame”:

matrice des effectifs, initialisation
N<-data.frame("tick"=0, "N1"=1, "N2"=1, "N3"=1, "Ntot"=3) # generation changed to tick

vecteur des parametres (ri: repro; si: survie)
P<-c("K"=100, "r1"=0.01, "r2"=0.008, "r3"=0.006, # growth rates can be divided by 1/100 as a first approx

"s1"=0.1, "s2"=0.5, "s3"=0.8) # (see development in notebook)
date de la perturbation
t0<-1500

2

debut incrementation
pre-perturbation
for(t in 1:t0) {

Nt<-N[dim(N)[1],2:4]*(1+(P[2:4]*(P[1]-N[dim(N)[1],5])/P[1]))
N<-rbind(N,NA)
N[dim(N)[1],]<-c(t,Nt,sum(Nt))

}
perturbation
Nt0<-N[dim(N)[1],2:4]*P[5:7]
N<-rbind(N,NA)
N[dim(N)[1],]<-c(t0,Nt0,sum(Nt0))
post-perturbation
for(t in (t0+1):(t0+2000)) {

Nt<-N[dim(N)[1],2:4]*(1+(P[2:4]*(P[1]-N[dim(N)[1],5])/P[1]))
N<-rbind(N,NA)
N[dim(N)[1],]<-c(t,Nt,sum(Nt))

}
fin incrementation

plot
plot(Ntot~tick,data=N,type="l", ylab="effectif", ylim=c(0,P[1]))
lines(N$tick,N$N1,col="blue")
lines(N$tick,N$N2,col="green")
lines(N$tick,N$N3,col="red")
abline(h=P[1],lty=2)

0 500 1000 1500 2000 2500 3000 3500

0
20

40
60

80
10

0

tick

ef
fe

ct
if

All right, this is fine, we confirm that moving from generations to ticks is numerically similar.

We might see, though, the population oscilalte around K. Do we?

3

plot
plot(Ntot~tick,data=N,type="l", ylab="effectif", ylim = c(95, 105))
lines(N$tick,N$N1,col="blue")
lines(N$tick,N$N2,col="green")
lines(N$tick,N$N3,col="red")
abline(h=P[1],lty=2)

0 500 1000 1500 2000 2500 3000 3500

96
98

10
0

10
2

10
4

tick

ef
fe

ct
if

No, we do not because there is no approximation to integer numbers.

Let us try to see whether we obtain oscillations (which would include negative growth rates for N around K)
if we introduce rounding. Notice that to do this, some stochasticity must be introduced, or else the growth
process will be impossible due to rounding that prevents all change.

matrice des effectifs, initialisation
N<-data.frame("tick"=0, "N1"=1, "N2"=1, "N3"=1, "Ntot"=3) # generation changed to tick

vecteur des parametres (ri: repro; si: survie)
P<-c("K"=100, "r1"=0.01, "r2"=0.008, "r3"=0.006, # growth rates can be divided by 1/100 as a first approx

"s1"=0.1, "s2"=0.5, "s3"=0.8) # (see development in notebook)
date de la perturbation
t0<-1500

debut incrementation
pre-perturbation
for(t in 1:t0) {

Nt<-c(
do.call(what = sample(x = c("ceiling","floor"), size = 1), # numbers are randomly rounded up or down

args = list(N[dim(N)[1],2]*(1+(P[2]*(P[1]-N[dim(N)[1],5])/P[1])))), # for individual genotypes
do.call(what = sample(x = c("ceiling","floor"), size = 1),

args = list(N[dim(N)[1],3]*(1+(P[3]*(P[1]-N[dim(N)[1],5])/P[1])))),
do.call(what = sample(x = c("ceiling","floor"), size = 1),

args = list(N[dim(N)[1],4]*(1+(P[4]*(P[1]-N[dim(N)[1],5])/P[1]))))

4

)
N<-rbind(N,NA)
N[dim(N)[1],]<-c(t,Nt,sum(Nt))

}
perturbation
Nt0<-N[dim(N)[1],2:4]*P[5:7]
N<-rbind(N,NA)
N[dim(N)[1],]<-c(t0,Nt0,sum(Nt0))
post-perturbation
for(t in (t0+1):(t0+2000)) {

Nt<-c(
do.call(what = sample(x = c("ceiling","floor"), size = 1), # numbers are randomly rounded up or down

args = list(N[dim(N)[1],2]*(1+(P[2]*(P[1]-N[dim(N)[1],5])/P[1])))), # for individual genotypes
do.call(what = sample(x = c("ceiling","floor"), size = 1),

args = list(N[dim(N)[1],3]*(1+(P[3]*(P[1]-N[dim(N)[1],5])/P[1])))),
do.call(what = sample(x = c("ceiling","floor"), size = 1),

args = list(N[dim(N)[1],4]*(1+(P[4]*(P[1]-N[dim(N)[1],5])/P[1]))))
)

N<-rbind(N,NA)
N[dim(N)[1],]<-c(t,Nt,sum(Nt))

}
fin incrementation

plot
plot(Ntot~tick,data=N,type="l", ylab="effectif", ylim=c(0,1.05*P[1]))
lines(N$tick,N$N1,col="blue")
lines(N$tick,N$N2,col="green")
lines(N$tick,N$N3,col="red")
abline(h=P[1],lty=2)

0 500 1000 1500 2000 2500 3000 3500

0
20

40
60

80
10

0

tick

ef
fe

ct
if

This is basically working, even though, as the population reaches K, there is no way of having any further

5

change, as before.

What we have to do now, to conform to population-genetic expectations, is to introduce the survival con-
straint for every tick, and then let the population grow again over the following tick.

Introducing mortality

A first crude attempt: mortaility soon after growth

For the first attempt, few changes are needed:

• increasing K too obtain a higher resolution
• setting aside the disturbance (we focus on what happens at “equilibrium”)
• running the process for a longer number of ticks (to follow the equilibrium simulation over a longer

time)

Let us set a flat mortality rate at 0.0001 of the number for each genotype

survival <- 0.9999

N<-data.frame("tick"=0, "N1"=1, "N2"=1, "N3"=1, "Ntot"=3)

vecteur des parametres (ri: repro; si: survie)
P<-c("K"=1000, "r1"=0.0100, "r2"=0.0080, "r3"=0.0060, # new K = 1000

"s1"=0.1, "s2"=0.5, "s3"=0.8) # (sX not used but kept for the next steps)
date de la perturbation
t0<-30000

debut incrementation
pre-perturbation
for(t in 1:t0) {

Nt<-c(
do.call(what = sample(x = c("ceiling","floor"), size = 1),

args = list(survival * N[dim(N)[1],2]*(1+(P[2]*(P[1]-N[dim(N)[1],5])/P[1])))), # survival coeff added
do.call(what = sample(x = c("ceiling","floor"), size = 1),

args = list(survival * N[dim(N)[1],3]*(1+(P[3]*(P[1]-N[dim(N)[1],5])/P[1])))), # survival coeff added
do.call(what = sample(x = c("ceiling","floor"), size = 1),

args = list(survival * N[dim(N)[1],4]*(1+(P[4]*(P[1]-N[dim(N)[1],5])/P[1])))) # survival coeff added
)

N<-rbind(N,NA)
N[dim(N)[1],]<-c(t,Nt,sum(Nt))

}
plot
plot(Ntot~tick,data=N,type="l", ylab="effectif", ylim=c(0,1.05*P[1]))
lines(N$tick,N$N1,col="blue")
lines(N$tick,N$N2,col="green")
lines(N$tick,N$N3,col="red")
abline(h=P[1],lty=2)

6

0 5000 10000 15000 20000 25000 30000

0
20

0
40

0
60

0
80

0
10

00

tick

ef
fe

ct
if

Cool! The population-genetic expectations are back. The genotype with the highest fitness gets fixed (forms
of equilibrium can also be generated, though, by fiddling with the parameters, which is also quite good).

Now, the cool thing will be to introduce some form of mating. . .

A slightly more refined iteration: introducing random mating

This should be easy, assuming that genotypes 1, 2 and 3 are respectively AA, Aa, and aa. To
obtain this, instead of assigning all “progeny” of a genotype to itself, we can use standard Hardy-Weinberg
equilibrium (HWE) formulae for the proportion of offspring of each genotype. This is going to be super-cool!

So, the increase of the “population” of a genotype (its fecundity, or the number of offspring it produces) is
not arking back to the same genotype, but it is attributed to each genotype according to H-W proportions.

This requires tweaking the code a little further, but it should not be super-complicated.

The process should have three steps:

1. computing the deltaN for each genotype
2. assigning the genotypes to the deltaN individuals based on HWE
3. computing the final N for each genotype
4. applying mortality (the separation of mortality from other steps will be useful for subsequent, more

refined iterations)

survival <- 0.9998

N<-data.frame("tick"=0, "N1"=0, "N2"=30, "N3"=0, "Ntot"=30)

vecteur des parametres (ri: repro; si: survie)
P<-c("K"=1000, "r1"=0.0100, "r2"=0.0060, "r3"=0.0020, # new K = 1000

"s1"=0.1, "s2"=0.5, "s3"=0.8) # (sX not used but kept for the next steps)
date de la perturbation
t0<-20000

7

debut incrementation
pre-perturbation
for(t in 1:t0) {
computing increments for each genotype (= their "progeny")
deltaN1 <- do.call(what = sample(x = c("ceiling","floor"), size = 1),

args = list(N[dim(N)[1],2]*(1+(P[2]*(P[1]-N[dim(N)[1],5])/P[1])))) - N[dim(N)[1],2]
deltaN2 <- do.call(what = sample(x = c("ceiling","floor"), size = 1),

args = list(N[dim(N)[1],3]*(1+(P[3]*(P[1]-N[dim(N)[1],5])/P[1])))) - N[dim(N)[1],3]
deltaN3 <- do.call(what = sample(x = c("ceiling","floor"), size = 1),

args = list(N[dim(N)[1],4]*(1+(P[4]*(P[1]-N[dim(N)[1],5])/P[1])))) - N[dim(N)[1],4]
attributing progeny to each genotype (through a random process, based on H-W expectations: usage of a multinomial draw)
progenyFrom1 <- rmultinom(n = 1, size = deltaN1, prob = c(N[dim(N)[1],2] + 0.5*N[dim(N)[1],3], # contributions to

0.5*N[dim(N)[1],3] + N[dim(N)[1],4], # genotypes AA, Aa, aa
0)) # from HWE proportions

progenyFrom2 <- rmultinom(n = 1, size = deltaN2, prob = c(0.5*N[dim(N)[1],2] + 0.25*N[dim(N)[1],3],
0.5*N[dim(N)[1],2] + 0.5*N[dim(N)[1],3] + 0.5*N[dim(N)[1],4],
0.25*N[dim(N)[1],3] + 0.5*N[dim(N)[1],4]))

progenyFrom3 <- rmultinom(n = 1, size = deltaN3, prob = c(0,
N[dim(N)[1],2] + 0.5*N[dim(N)[1],3],
0.5*N[dim(N)[1],3] + N[dim(N)[1],4]))

progenyTot <- cbind(progenyFrom1, progenyFrom2, progenyFrom3)
N1postRepro <- N[dim(N)[1],2] + rowSums(progenyTot)[1]
N2postRepro <- N[dim(N)[1],3] + rowSums(progenyTot)[2]
N3postRepro <- N[dim(N)[1],4] + rowSums(progenyTot)[3]

Nt<-c(
survival * N1postRepro,
survival * N2postRepro,
survival * N3postRepro

)
N<-rbind(N,NA)
N[dim(N)[1],]<-c(t,Nt,sum(Nt))

}
plot
plot(Ntot~tick,data=N,type="l", ylab="effectif", ylim=c(0,1.05*P[1]))
lines(N$tick,N$N1,col="blue")
lines(N$tick,N$N2,col="green")
lines(N$tick,N$N3,col="red")
abline(h=P[1],lty=2)

8

0 5000 10000 15000 20000

0
20

0
40

0
60

0
80

0
10

00

tick

ef
fe

ct
if

The addition of random mating confers realism to the whole thing and allows to fulfill all the fundamental
population genetic expectations.

Back to resilience: including the effect of a disturbance

The disturbance and post-disturbance kynetics are re-instated, using the new algorithm including mortality
and random mating. Further variables added:

• survival is subdivided into three values, one for each genotype
• survivalPost is the survival rate after disturbance, also with one value for each genotype
• Kpost is the carrying capacity after disturbance (corresponding to P[8])
• r1post, r2post, r3post are the reproductive rates after disturbance (stored in P[9:11])
• tEnd is the end of the simulation

survival <- c("surv1" = 0.9998, "surv2" = 0.9998, "surv3" = 0.9998) # allowing for variable survival rates for each
genotype

survivalPost <- c("surv1post" = 0.9998, # allowing for variable survival rates for each
"surv2post" = 0.9998, "surv3post" = 0.9998) # genotype after disturbance

N<-data.frame("tick"=0, "N1"=0, "N2"=30, "N3"=0, "Ntot"=30)

vecteur des parametres (ri: repro; si: survie)
P<-c("K"=1000, "r1"=0.0100, "r2"=0.0020, "r3"=0.0020, # new K = 1000

"s1"=0.1, "s2"=0.5, "s3"=0.8, "Kpost"=1000, # Kpost = carrying capacity after disturbance
"r1post"=0.0100, "r2post"=0.0060,"r3post"=0.0020)

date de la perturbation
t0<-5000
end of simulation
tEnd <- 10000
debut incrementation
pre-perturbation
for(t in 1:t0) {

9

computing increments for each genotype (= their "progeny")
deltaN1 <- do.call(what = sample(x = c("ceiling","floor"), size = 1),

args = list(N[dim(N)[1],2]*(1+(P[2]*(P[1]-N[dim(N)[1],5])/P[1])))) - N[dim(N)[1],2]
deltaN2 <- do.call(what = sample(x = c("ceiling","floor"), size = 1),

args = list(N[dim(N)[1],3]*(1+(P[3]*(P[1]-N[dim(N)[1],5])/P[1])))) - N[dim(N)[1],3]
deltaN3 <- do.call(what = sample(x = c("ceiling","floor"), size = 1),

args = list(N[dim(N)[1],4]*(1+(P[4]*(P[1]-N[dim(N)[1],5])/P[1])))) - N[dim(N)[1],4]
attributing progeny to each genotype (through a random process, based on H-W expectations: usage of a multinomial draw)
progenyFrom1 <- rmultinom(n = 1, size = deltaN1, prob = c(N[dim(N)[1],2] + 0.5*N[dim(N)[1],3], # contributions to

0.5*N[dim(N)[1],3] + N[dim(N)[1],4], # genotypes AA, Aa, aa
0)) # from HWE proportions

progenyFrom2 <- rmultinom(n = 1, size = deltaN2, prob = c(0.5*N[dim(N)[1],2] + 0.25*N[dim(N)[1],3],
0.5*N[dim(N)[1],2] + 0.5*N[dim(N)[1],3] + 0.5*N[dim(N)[1],4],
0.25*N[dim(N)[1],3] + 0.5*N[dim(N)[1],4]))

progenyFrom3 <- rmultinom(n = 1, size = deltaN3, prob = c(0,
N[dim(N)[1],2] + 0.5*N[dim(N)[1],3],
0.5*N[dim(N)[1],3] + N[dim(N)[1],4]))

progenyTot <- cbind(progenyFrom1, progenyFrom2, progenyFrom3)
N1postRepro <- N[dim(N)[1],2] + rowSums(progenyTot)[1]
N2postRepro <- N[dim(N)[1],3] + rowSums(progenyTot)[2]
N3postRepro <- N[dim(N)[1],4] + rowSums(progenyTot)[3]

Nt<-c(
survival[1] * N1postRepro,
survival[2] * N2postRepro,
survival[3] * N3postRepro

)
N<-rbind(N,NA)
N[dim(N)[1],]<-c(t,Nt,sum(Nt))

}
#
disturbance step
Nt0<-N[dim(N)[1],2:4]*P[5:7]
N<-rbind(N,NA)
N[dim(N)[1],]<-c(t0,Nt0,sum(Nt0))
#
post-disturbance phase (same code as pre-disturbance)
for(t in (t0+1):tEnd) {

computing increments for each genotype (= their "progeny")
deltaN1 <- do.call(what = sample(x = c("ceiling","floor"), size = 1),

args = list(N[dim(N)[1],2]*(1+(P[9]*(P[8]-N[dim(N)[1],5])/P[1])))) - N[dim(N)[1],2]
deltaN2 <- do.call(what = sample(x = c("ceiling","floor"), size = 1),

args = list(N[dim(N)[1],3]*(1+(P[10]*(P[8]-N[dim(N)[1],5])/P[1])))) - N[dim(N)[1],3]
deltaN3 <- do.call(what = sample(x = c("ceiling","floor"), size = 1),

args = list(N[dim(N)[1],4]*(1+(P[11]*(P[8]-N[dim(N)[1],5])/P[1])))) - N[dim(N)[1],4]
attributing progeny to each genotype (through a random process, based on H-W expectations: usage of a multinomial draw)
progenyFrom1 <- rmultinom(n = 1, size = deltaN1, prob = c(N[dim(N)[1],2] + 0.5*N[dim(N)[1],3], # contributions to

0.5*N[dim(N)[1],3] + N[dim(N)[1],4], # genotypes AA, Aa, aa
0)) # from HWE proportions

progenyFrom2 <- rmultinom(n = 1, size = deltaN2, prob = c(0.5*N[dim(N)[1],2] + 0.25*N[dim(N)[1],3],
0.5*N[dim(N)[1],2] + 0.5*N[dim(N)[1],3] + 0.5*N[dim(N)[1],4],
0.25*N[dim(N)[1],3] + 0.5*N[dim(N)[1],4]))

progenyFrom3 <- rmultinom(n = 1, size = deltaN3, prob = c(0,
N[dim(N)[1],2] + 0.5*N[dim(N)[1],3],

10

0.5*N[dim(N)[1],3] + N[dim(N)[1],4]))
progenyTot <- cbind(progenyFrom1, progenyFrom2, progenyFrom3)
N1postRepro <- N[dim(N)[1],2] + rowSums(progenyTot)[1]
N2postRepro <- N[dim(N)[1],3] + rowSums(progenyTot)[2]
N3postRepro <- N[dim(N)[1],4] + rowSums(progenyTot)[3]

Nt<-c(
survivalPost[1] * N1postRepro,
survivalPost[2] * N2postRepro,
survivalPost[3] * N3postRepro

)
N<-rbind(N,NA)
N[dim(N)[1],]<-c(t,Nt,sum(Nt))

}
plot
plot(Ntot~tick,data=N,type="l", ylab="effectif", ylim=c(0,1.05*P[1]))
lines(N$tick,N$N1,col="blue")
lines(N$tick,N$N2,col="green")
lines(N$tick,N$N3,col="red")
abline(h=P[1],lty=2)

0 2000 4000 6000 8000 10000

0
20

0
40

0
60

0
80

0
10

00

tick

ef
fe

ct
if

save.image()

We’re now set to play with the parameters!

A new generalisation: multiple disturbances

This requires a rather fundamental change in the way the code is written: there is a single loop section,
and depending on whether the tick is a ‘normal’ or a ‘disturbance’ one, one or the other of the functions
for growth / population decrease is used. In a way, it is just a generalisation of the previous version, but it
makes the whole code much easier to read.

11

Also, some mistakes (such as not rounding after mortality) have been fixed.

survival <- c("surv1" = 0.9990, "surv2" = 0.9990, "surv3" = 0.9990) # allowing for variable survival rates for each
genotype

survivalPost <- c("surv1post" = 0.9990, # allowing for variable survival rates for each
"surv2post" = 0.9990, "surv3post" = 0.9990) # genotype after disturbance

N<-data.frame("tick"=0, "N1"=500, "N2"=0, "N3"=500, "Ntot"=1000) # setting initial counts for each genotype

parameter vectors (r(i)post: repro; s(i): surv at disturbance)
P<-c("K"=10000, "r1"=0.0100, "r2"=0.0075, "r3"=0.0050, # new K = 10000 (carrying capacity larger than starting pop size)

"s1"=0.1, "s2"=0.5, "s3"=0.8, "Kpost"=10000, # Kpost = carrying capacity after disturbance
"r1post"=0.0100, "r2post"=0.0060,"r3post"=0.0020)

disturbance dates
t0<-c(500,2500,4500)
end of simulation
tEnd <- 20000
start increment
pre-perturbation
for(t in 1:tEnd) {
computing increments for each genotype (= their "progeny")

if (!is.element(el = t, set = t0)) { # checks whether we are in a "normal" or "disturbance" tick
in the following lines,
the do.call() calls compute the new sub-population (genotype) sizes
based on GROWTH rates, and round them
and then the difference with the current sub-pop size is taken.
the list() calls provide the updated sub-populations sizes after
application of the logistic growth equation, with s = 1:3 :
N(1,s) = N(0,s) * (1 + r(s) *(N(max) - N(0,tot)) / N(max))
where:
N(0,s) is provided by N[dim(N)[1],s+1]
r(s) is provided by P[s+1]
N(max) is provided by P[1]
N(0,tot) is provided by N[dim(N)[1],5]

deltaN1 <- do.call(what = sample(x = c("ceiling","floor"), size = 1), # randomly choosing how to round
args = list(N[dim(N)[1],2]*(1+(P[2]*(P[1]-N[dim(N)[1],5])/P[1])))) - N[dim(N)[1],2]

deltaN2 <- do.call(what = sample(x = c("ceiling","floor"), size = 1), # randomly choosing how to round
args = list(N[dim(N)[1],3]*(1+(P[3]*(P[1]-N[dim(N)[1],5])/P[1])))) - N[dim(N)[1],3]

deltaN3 <- do.call(what = sample(x = c("ceiling","floor"), size = 1), # randomly choosing how to round
args = list(N[dim(N)[1],4]*(1+(P[4]*(P[1]-N[dim(N)[1],5])/P[1])))) - N[dim(N)[1],4]

attributing progeny to each genotype (through a random process, based on H-W expectations: usage of a multinomial draw)
progenyFrom1 <- rmultinom(n = 1, size = deltaN1, prob = c(N[dim(N)[1],2] + 0.5*N[dim(N)[1],3], # contributions of

genotype AA to
0.5*N[dim(N)[1],3] + N[dim(N)[1],4], # genotypes AA, Aa, aa
0)) # from HWE proportions

progenyFrom2 <- rmultinom(n = 1, size = deltaN2, prob = c(0.5*N[dim(N)[1],2] + 0.25*N[dim(N)[1],3], # same for Aa
0.5*N[dim(N)[1],2] + 0.5*N[dim(N)[1],3] + 0.5*N[dim(N)[1],4],
0.25*N[dim(N)[1],3] + 0.5*N[dim(N)[1],4]))

progenyFrom3 <- rmultinom(n = 1, size = deltaN3, prob = c(0, # same for aa
N[dim(N)[1],2] + 0.5*N[dim(N)[1],3],
0.5*N[dim(N)[1],3] + N[dim(N)[1],4]))

progenyTot <- cbind(progenyFrom1, progenyFrom2, progenyFrom3)
N1postRepro <- N[dim(N)[1],2] + rowSums(progenyTot)[1] # updating total numbers for each genotype after reproduction
N2postRepro <- N[dim(N)[1],3] + rowSums(progenyTot)[2] #
N3postRepro <- N[dim(N)[1],4] + rowSums(progenyTot)[3] #

12

Nt<-c(
do.call(what = sample(x = c("ceiling","floor"), size = 1), args = list(survival[1] * N1postRepro)), # mortality
do.call(what = sample(x = c("ceiling","floor"), size = 1), args = list(survival[2] * N2postRepro)), # step
do.call(what = sample(x = c("ceiling","floor"), size = 1), args = list(survival[3] * N3postRepro)) #

)
N<-rbind(N,NA)
N[dim(N)[1],]<-c(t,Nt,sum(Nt)) # updating the vector of sub-population and population sizes

}
#
disturbance step
at disturbance, only mortality occurs, with mortality rates that apply specifically to disturbance events

else {
Nt0<-c(

do.call(what = sample(x = c("ceiling","floor"), size = 1), args = list(N[dim(N)[1],2]*P[5])),
do.call(what = sample(x = c("ceiling","floor"), size = 1), args = list(N[dim(N)[1],3]*P[6])),
do.call(what = sample(x = c("ceiling","floor"), size = 1), args = list(N[dim(N)[1],4]*P[7]))

)
N<-rbind(N,NA)
N[dim(N)[1],]<-c(t,Nt0,sum(Nt0)) # updating the vector of sub-population and population sizes

}
}

plot
plot(Ntot~tick,data=N,type="l", ylab="population sizes", ylim=c(0,1.05*P[1]))
lines(N$tick,N$N1,col="blue")
lines(N$tick,N$N2,col="green")
lines(N$tick,N$N3,col="red")
abline(h=P[1],lty=2)
text(x = c(14000,15000,16000), y = rep(6000,3), labels = c("AA","Aa","aa"), col = c("blue","green","red"))

0 5000 10000 15000 20000

0
20

00
60

00
10

00
0

tick

po
pu

la
tio

n
si

ze
s

AA Aa aa

save.image()

13

A new step: modelling two independent loci driving survival and fecundity

The general equations stem from the developments in Chunk C8.

Yet the generation of two-locus genotypes cannot be performed at the population level, because this would
prevent the development of any two-locus pattern.

Therefore, now genotypes, their reproduction and mortality events must be modelled individu-
ally (while summaries such as plotting will still be analysed at the summary, (sub)population level).

This requires that each individual “genotype” undergoes reproduction and survival events with probabilities
provided by its genotype at the respective r and s locus, respectively.

This is a rather big change in the coding, but equations stay the same and the global (sub)populations’ net
growth(reproduction) and decrease (mortality) will be the outcome of the sum of individual events.

To make calculations simple, at each locus the genotype will be coded by fecundity and survival rates,
respectively (as opposed to being coded as qualitative genotypes, e.g. RR, Rr, rr and SS, Ss, ss).

I expect that this will eventually lead to the fixation of a genotype with the best survival and fecundity
rates, as no real trade-off (e.g., energy invested in each life-history trait) is involved. Yet for the sake of
manipulating multi-locus, multi-trait individual genotypes, this will be fair enough.

**
setting the parameters:
#`same as in C8 for the fecundity and survival rates,
but the numbers of genotypes are now defined
separately for two loci
#
survival <- c("surv1" = 0.9990, "surv2" = 0.9990, "surv3" = 0.9990) # allowing for variable survival rates for each

genotype (no longer in use here, kept to pick "flat rate" survival)
survivalPost <- c("surv1post" = 0.9990, # allowing for variable survival rates for each

"surv2post" = 0.9990, "surv3post" = 0.9990) # genotype after disturbance
N<-data.frame("tick"=0, # define starting time

"F1"=500, "F2"=0, "F3"=500, # define initial genotype frequencies for FECUNDITY locus
"S1"=500, "S2"=0, "S3"=500, # define initial genotype frequencies for SURVIVAL locus
"Ntot"=1000) # define initial total population size (could be deduced from the above)

#
NtwoLocus <- data.frame(matrix(nrow = 0, ncol = 10)) # table for two-locus genotypes
names(NtwoLocus) <- c("tick","FFSS","FFSs","FFss","FfSS","FfSs","Ffss","ffSS","ffSs","ffss")
parameter vectors (r(i)post: repro; s(i): surv at disturbance)
P<-c("K"=5000, "r1"=0.0100, "r2"=0.0075, "r3"=0.0050, # new K = 10000 (carrying capacity larger than starting pop size)

"s1"=0.1, "s2"=0.5, "s3"=0.8, "Kpost"=5000, # Kpost = carrying capacity after disturbance
(optional; not implemented so far)

"r1post"=0.0100, "r2post"=0.0060,"r3post"=0.0020) # r(i)post: fecundity after disturbance (optional; not implemented so far)
disturbance dates : either fixed or random
fixed dates:
t0 <- c(500,2500,4500)
random dates:
library(KScorrect)
t0 <- sort(round(rlunif(5,200,19000)))
end of simulation
tEnd <- 20000
#
pace of genotype recording
recordSpacing <- 200
#

14

**
#
Generating genotypes
genoF <- sample(x = P[2:4], size = N[dim(N)[1], dim(N)[2]], replace = T, # I keep using dim() but I cannot remember why

prob = N[dim(N)[1], 2:4]) # This is a random sample of approximately equal
proportions of the two homozygotes

genoS <- sample(x = P[5:7], size = N[dim(N)[1], dim(N)[2]], replace = T, # I keep using dim() but I cannot remember why
prob = N[dim(N)[1], 5:7]) # This is a random sample of approximately equal

proportions of the two homozygotes
REMINDER: the "S" genotypes are only used at disturbance;
flat survival rates are used otherwise (and unless stated
otherwise in further developments

sqnity checks
table(genoF); table(genoS)

genoF
0.005 0.01
477 523

genoS
0.1 0.8
491 509

Creating the two-locus table
genoAll <- data.frame(genoF, genoS)
sanity check
table(genoAll)

genoS
genoF 0.1 0.8
0.005 233 244
0.01 258 265

#
filling starting two-locus genotype table
NtwoLocusInit <- data.frame(matrix(data = c(0,

sum(genoAll[1] == P[2] & genoAll[2] == P[7]), # number of RRSS
sum(genoAll[1] == P[2] & genoAll[2] == P[6]), # number of RRSs
sum(genoAll[1] == P[2] & genoAll[2] == P[5]), # number of RRss
sum(genoAll[1] == P[3] & genoAll[2] == P[7]), # number of RrSS
sum(genoAll[1] == P[3] & genoAll[2] == P[6]), # number of RrSs
sum(genoAll[1] == P[3] & genoAll[2] == P[5]), # number of Rrss
sum(genoAll[1] == P[4] & genoAll[2] == P[7]), # number of rrSS
sum(genoAll[1] == P[4] & genoAll[2] == P[6]), # number of rrSs
sum(genoAll[1] == P[4] & genoAll[2] == P[5])), # number of rrss

nrow = 1, ncol = 10))
names(NtwoLocusInit) <- names(NtwoLocus)
NtwoLocus <- rbind(NtwoLocus, NtwoLocusInit)
End of genotype generation
#
**
For the purposes of the reproduction phase, a "genotype transition matrix"

15

giving the probability of obtaining a given genotype from a given cross
must be provided (for each locus)
genoTransitionR <- data.frame(rep(P[2:4], 3),

rep(P[2:4], each = 3),
c(1,0.5,0,0.5,0.25,0,0,0,0),
c(0,0.5,1,0.5,0.5,0.5,1,0.5,0),
c(0,0,0,0,0.25,0.5,0,0.5,1))

names(genoTransitionR) <- c("geno1","geno2","p1","p2","p3")
genoTransitionS <- data.frame(rep(P[5:7], 3),

rep(P[5:7], each = 3),
c(1,0.5,0,0.5,0.25,0,0,0,0),
c(0,0.5,1,0.5,0.5,0.5,1,0.5,0),
c(0,0,0,0,0.25,0.5,0,0.5,1))

names(genoTransitionS) <- c("geno1","geno2","p1","p2","p3")
#
**
Iterations: inheriting from Chunk C8 with (major!) modifications
#
for(t in 1:tEnd) {
computing increments for each genotype (= their "progeny")

if (!is.element(el = t, set = t0)) { # checks whether we are in a "normal" or "disturbance" tick
in the following lines,
the do.call() calls compute the new sub-population (genotype) sizes
based on GROWTH rates, and round them
and then the difference with the current sub-pop size is taken.
the list() calls provide the updated sub-populations sizes after
application of the logistic growth equation, with s = 1:3 :
N(1,s) = N(0,s) * (1 + r(s) *(N(max) - N(0,tot)) / N(max))
where:
N(0,s) is provided by N[dim(N)[1],s+1]
r(s) is provided by individual genotype at locus R
N(max) is provided by P[1]
N(0,tot) is provided by N[dim(N)[1],5]

**
FECUNDITY step:
NEW in C9: each individual reproduces with a probability driven by its "F" genotype (and the population size)
and if it does reproduce, a new individual is drawn following H-W and added to the population
#
#
Function to determine success and assign genotype to progeny

repro <- function(y)
{

success <- sample(x = 1:0, size = 1, # here, the probability that an individual
prob = c(y[1]*(P[1]-N[dim(N)[1],8])/P[1], # reproduces is driven by its genotype-defined r

1 - y[1]*(P[1]-N[dim(N)[1],8])/P[1]) # and the overall population's distance from K(max)
)

if (success == 1) # checks whether the individual successfully reproduced;
{ #

mate <- unlist(genoAll[sample(x = 1:nrow(genoAll), size = 1),1:2])# if so, ONE genotype is randomly drawn from the pop for reproduction
progenyProbsR <- genoTransitionR[genoTransitionR[,1] == y[1] & genoTransitionR[,2] == mate[1],3:5] # progeny genotype probabilities
progenyProbsS <- genoTransitionS[genoTransitionS[,1] == y[2] & genoTransitionS[,2] == mate[2],3:5] # are defined
progenyGeno <- c(sample(x = P[2:4], size = 1, prob = progenyProbsR), # and finally, a genotype is drawn

sample(x = P[5:7], size = 1, prob = progenyProbsS)) # for each locus

16

return(progenyGeno) # the function finally returns the progeny genotype, if reproduction has occurred
}

}
the repro() function needs to be applied to all genotypes, and the resulting progeny genotypes
stored in a table

newGenotypes <- apply(X = genoAll, MARGIN = 1, FUN = repro)
if (!is.null(newGenotypes)) # check that at least one offspring has been produced
{

newGenotypes.cleaned <- newGenotypes[-which(sapply(newGenotypes, is.null))]
newGenotypes.df <- data.frame(do.call(what = rbind, args = newGenotypes.cleaned))

} else { # if no offspring produced, make an empty data frame
newGenotypes.df <- data.frame(matrix(nrow = 0, ncol = 2))
}

names(newGenotypes.df) <- names(genoAll)
**
Mortality step:
this is flat-rate outside the disturbance ticks
individuals are randomly drawn to be kept

survivors <- sample(x = c(T,F), size = N[dim(N)[1], dim(N)[2]], replace = T, # randomly defining individuals that will survive
prob = c(survival[1], 1- survival[1])) # from the original population

genoAll.surviving <- genoAll[survivors,] # and keeping survivors
updating the genotype table for the new loop:

genoAll <- rbind(genoAll.surviving, newGenotypes.df)
recomputing genotype counts and total numbers

Nt <- c(sum(genoAll[1] == P[2]), # Notice that counting cannot be done with a
sum(genoAll[1] == P[3]), # table() command
sum(genoAll[1] == P[4]), # because it would misbehave in case
sum(genoAll[2] == P[5]), # one or more genotypes are missing
sum(genoAll[2] == P[6]), #
sum(genoAll[2] == P[7])) #

N<-rbind(N,NA)
N[dim(N)[1],]<-c(t,Nt,sum(Nt[1:3])) # updating the vector of sub-population and population sizes

}
#
**
disturbance step
at disturbance, only mortality occurs, with mortality rates that apply specifically to disturbance events
and depending on genotype at the "S" locus

else {
Function to determine survival success

surv <- function(y)
{

S <- sample(x = c(T,F), size = 1, prob = c(y[2], 1-y[2]))
return(S)

}
Application of the function to the "S" locus "genotypes"

survivorship <- unlist(apply(X = genoAll, MARGIN = 1, FUN = surv))
updating genoAll (keeping successfull survivors)
genoAll <- genoAll[survivorship,]

recomputing genotype counts and total numbers
Nt <- c(sum(genoAll[1] == P[2]), # Notice that counting cannot be done with a

sum(genoAll[1] == P[3]), # table() command
sum(genoAll[1] == P[4]), # because it would misbehave in case

17

sum(genoAll[2] == P[5]), # one or more genotypes are missing
sum(genoAll[2] == P[6]), #
sum(genoAll[2] == P[7])) #

N<-rbind(N,NA)
N[dim(N)[1],]<-c(t,Nt,sum(Nt[1:3])) # updating the vector of sub-population and population sizes
}

computing ans storing TWO-LOCUS genotype frequencies
NtwoLocusLast <- data.frame(matrix(data = c(t,

sum(genoAll[1] == P[2] & genoAll[2] == P[7]), # number of RRSS
sum(genoAll[1] == P[2] & genoAll[2] == P[6]), # number of RRSs
sum(genoAll[1] == P[2] & genoAll[2] == P[5]), # number of RRss
sum(genoAll[1] == P[3] & genoAll[2] == P[7]), # number of RrSS
sum(genoAll[1] == P[3] & genoAll[2] == P[6]), # number of RrSs
sum(genoAll[1] == P[3] & genoAll[2] == P[5]), # number of Rrss
sum(genoAll[1] == P[4] & genoAll[2] == P[7]), # number of rrSS
sum(genoAll[1] == P[4] & genoAll[2] == P[6]), # number of rrSs
sum(genoAll[1] == P[4] & genoAll[2] == P[5])), # number of rrss

nrow = 1, ncol = 10))
names(NtwoLocusLast) <- names(NtwoLocus)
NtwoLocus <- rbind(NtwoLocus, NtwoLocusLast)

storing genotypes
if (t / recordSpacing == round(t / recordSpacing)) assign(x = paste0("genoAll_",t), value = genoAll)

}
Saving
save.image()

Plotting of single-locus genotype frequencies

plot
plot(Ntot~tick,data=N,type="l", ylab="population sizes", ylim=c(0,1.05*P[1]))
lines(N$tick,N$F1,col="blue",lwd=3)
lines(N$tick,N$F2,col="blue",lwd=2)
lines(N$tick,N$F3,col="blue",lwd=1)
lines(N$tick,N$S1,col="red",lwd=1, lty = "dashed")
lines(N$tick,N$S2,col="red",lwd=2, lty = "dashed")
lines(N$tick,N$S3,col="red",lwd=3, lty = "dashed")
abline(h=P[1],lty=2)
text(x = c(14000,14000), y = c(0.6*P[1],0.5*P[1]), labels = c("fecundity","survival"),

col = c("blue","red"), pos = 4)
text(x = 14000, y = 0.4*P[1], labels = "thicker line = higher value",

pos = 4, cex = 0.75)
lines(x = c(11500,13500), y = c(0.6*P[1],0.6*P[1]), col="blue", lwd = 2)
lines(x = c(11500,13500), y = c(0.5*P[1],0.5*P[1]), col="red", lty = "dashed", lwd = 2)

18

0 5000 10000 15000 20000

0
10

00
30

00
50

00

tick

po
pu

la
tio

n
si

ze
s

fecundity
survival
thicker line = higher value

Plotting of two-locus genotype frequencies

plot
plot(Ntot~tick,data=N,type="l", ylab="population sizes", ylim=c(0,1.05*P[1]))
lines(NtwoLocus$tick,NtwoLocus$FFSS,col="blue",lwd=3)
lines(NtwoLocus$tick,NtwoLocus$FFSs,col="blue",lwd=2)
lines(NtwoLocus$tick,NtwoLocus$FFss,col="blue",lwd=1)
lines(NtwoLocus$tick,NtwoLocus$FfSS,col="blue",lwd=3, lty = "dashed")
lines(NtwoLocus$tick,NtwoLocus$FfSs,col="blue",lwd=2, lty = "dashed")
lines(NtwoLocus$tick,NtwoLocus$Ffss,col="blue",lwd=1, lty = "dashed")
lines(NtwoLocus$tick,NtwoLocus$ffSS,col="blue",lwd=3, lty = "dotted")
lines(NtwoLocus$tick,NtwoLocus$ffSs,col="blue",lwd=2, lty = "dotted")
lines(NtwoLocus$tick,NtwoLocus$ffss,col="blue",lwd=1, lty = "dotted")
abline(h=P[1],lty=2)
text(x = c(5000,5000), y = c(0.8*P[1],0.7*P[1]), labels = c("filled, dashed, dotted: F genotypes","thick, medium, thin: S genotypes"),

col = "blue", pos = 4)

19

0 5000 10000 15000 20000

0
10

00
30

00
50

00

tick

po
pu

la
tio

n
si

ze
s filled, dashed, dotted: F genotypes

thick, medium, thin: S genotypes

Computing and plotting of genetic diversity

Calculation of expected heterozygosity from genotype frequencies at the two loci
function for calculations
expHet <- function(x)
{

HeF <- 2* ((2*x[2] + x[3]) / (2 * sum(x[2:4]))) * (1 - ((2*x[2] + x[3]) / (2 * sum(x[2:4]))))
HeS <- 2* ((2*x[5] + x[6]) / (2 * sum(x[5:7]))) * (1 - ((2*x[5] + x[6]) / (2 * sum(x[5:7]))))
return(c(HeF,HeS))

}
application of the function
He.df <- data.frame(t(apply(X = N, MARGIN = 1, FUN = expHet)))
names(He.df) <- c("HeF","HeS")
plotting
plot((N$Ntot/P[1]) ~ N$tick,type="l", ylab="He", main = "Expected heterozygosity")
lines(N$tick, He.df$HeF, col="blue",lwd=2)
lines(N$tick, He.df$HeS, col="red",lwd=2, lty = "dashed")
text(x = c(14000,14000), y = c(0.6,0.5), labels = c("fecundity","survival"),

col = c("blue","red"), pos = 4)
lines(x = c(11500,13500), y = c(0.6,0.6), col="blue", lwd = 2)
lines(x = c(11500,13500), y = c(0.5,0.5), col="red", lwd = 2, lty = "dashed")

20

0 5000 10000 15000 20000

0.
2

0.
4

0.
6

0.
8

Expected heterozygosity

N$tick

H
e

fecundity

survival

A new step: trait-trait trade-off through locus-locus epistasis

The general equations stem from the developments in Chunk C9.

As expected, complete independence of effects (no trade-off) led to the increase in frequency of a genotype
with the best survival and fecundity rates.

Now, a trade-off is introduced through a form of dominant epistasis, whereby the high-value homozygote
genotype at one locus reduces the value at the other locus (and a genotype with two “plus” genotypes has
depressed values at both traits).

Schematically, this will look like this (in the table, the genotypes are represented as 0, 1, 2, where 0 is the
lowest breeding value, and the phenotypes are defined relative than the breeding values, e.g., “0-” means
that the phenotype is lower than the breeding value):

F genotype S genotype F phenotype S phenotype
0 0 0 0
0 1 0 1
0 2 0- 2+
1 0 1 0
1 1 1 1
1 2 1- 2
2 0 2+ 0-
2 1 2 1-
2 2 1- 1-

The fecundity and survival probabilities will be based on phenotype as determined from the genotype after
taking into account the epistatic interactions above.

21

**
setting the parameters:
#`same as in C8 for the fecundity and survival rates,
but the numbers of genotypes are now defined
separately for two loci
#
survival <- c("surv1" = 0.9990, "surv2" = 0.9990, "surv3" = 0.9990) # allowing for variable survival rates for each

genotype (no longer in use here, kept to pick "flat rate" survival)
survivalPost <- c("surv1post" = 0.9990, # allowing for variable survival rates for each

"surv2post" = 0.9990, "surv3post" = 0.9990) # genotype after disturbance
N<-data.frame("tick"=0, # define starting time

"F1"=500, "F2"=0, "F3"=500, # define initial genotype frequencies for FECUNDITY locus
"S1"=500, "S2"=0, "S3"=500, # define initial genotype frequencies for SURVIVAL locus
"Ntot"=1000) # define initial total population size (could be deduced from the above)

#
NtwoLocus <- data.frame(matrix(nrow = 0, ncol = 10)) # table for two-locus genotypes
names(NtwoLocus) <- c("tick","FFSS","FFSs","FFss","FfSS","FfSs","Ffss","ffSS","ffSs","ffss")
parameter vectors (r(i)post: repro; s(i): surv at disturbance)
P<-c("K"=5000, "r1"=0.0100, "r2"=0.0075, "r3"=0.0050, # new K = 10000 (carrying capacity larger than starting pop size)

"s1"=0.1, "s2"=0.5, "s3"=0.8, "Kpost"=5000, # Kpost = carrying capacity after disturbance
(optional; not implemented so far)

"r1post"=0.0100, "r2post"=0.0060,"r3post"=0.0020) # r(i)post: fecundity after disturbance (optional; not implemented so far)
disturbance dates : either fixed or random
fixed dates:
t0 <- c(500,2500,4500)
random dates:
library(KScorrect)
t0 <- sort(round(rlunif(5,200,19000)))
end of simulation
tEnd <- 20000
#
pace of genotype recording
recordSpacing <- 200
#
**
#
Generating genotypes
genoF <- sample(x = P[2:4], size = N[dim(N)[1], dim(N)[2]], replace = T, # I keep using dim() but I cannot remember why

prob = N[dim(N)[1], 2:4]) # This is a random sample of approximately equal
proportions of the two homozygotes

genoS <- sample(x = P[5:7], size = N[dim(N)[1], dim(N)[2]], replace = T, # I keep using dim() but I cannot remember why
prob = N[dim(N)[1], 5:7]) # This is a random sample of approximately equal

proportions of the two homozygotes
REMINDER: the "S" genotypes are only used at disturbance;
flat survival rates are used otherwise (and unless stated
otherwise in further developments

sqnity checks
table(genoF); table(genoS)

genoF
0.005 0.01
475 525

genoS

22

0.1 0.8
498 502

Creating the two-locus table
genoAll <- data.frame(genoF, genoS)
row.names(genoAll) <- NULL
sanity check
table(genoAll)

genoS
genoF 0.1 0.8
0.005 236 239
0.01 262 263

#
filling starting two-locus genotype table
NtwoLocusInit <- data.frame(matrix(data = c(0,

sum(genoAll[1] == P[2] & genoAll[2] == P[7]), # number of RRSS
sum(genoAll[1] == P[2] & genoAll[2] == P[6]), # number of RRSs
sum(genoAll[1] == P[2] & genoAll[2] == P[5]), # number of RRss
sum(genoAll[1] == P[3] & genoAll[2] == P[7]), # number of RrSS
sum(genoAll[1] == P[3] & genoAll[2] == P[6]), # number of RrSs
sum(genoAll[1] == P[3] & genoAll[2] == P[5]), # number of Rrss
sum(genoAll[1] == P[4] & genoAll[2] == P[7]), # number of rrSS
sum(genoAll[1] == P[4] & genoAll[2] == P[6]), # number of rrSs
sum(genoAll[1] == P[4] & genoAll[2] == P[5])), # number of rrss

nrow = 1, ncol = 10))
names(NtwoLocusInit) <- names(NtwoLocus)
NtwoLocus <- rbind(NtwoLocus, NtwoLocusInit)
End of genotype generation
#
**
For the purposes of the reproduction phase, a "genotype transition matrix"
giving the probability of obtaining a given genotype from a given cross
must be provided (for each locus)
genoTransitionR <- data.frame(rep(P[2:4], 3),

rep(P[2:4], each = 3),
c(1,0.5,0,0.5,0.25,0,0,0,0),
c(0,0.5,1,0.5,0.5,0.5,1,0.5,0),
c(0,0,0,0,0.25,0.5,0,0.5,1))

names(genoTransitionR) <- c("geno1","geno2","p1","p2","p3")
genoTransitionS <- data.frame(rep(P[5:7], 3),

rep(P[5:7], each = 3),
c(1,0.5,0,0.5,0.25,0,0,0,0),
c(0,0.5,1,0.5,0.5,0.5,1,0.5,0),
c(0,0,0,0,0.25,0.5,0,0.5,1))

names(genoTransitionS) <- c("geno1","geno2","p1","p2","p3")
#
**
For introducing epistatic interactions, a matrix of transition of two-locus
genotypes into two-character phenotypes is established, along with a function
that allows to map phenotype onto genotype.
Transition matrix:

23

modification factors are set to 0.8 and 1.2 for negative and positive epistasis
epiNeg <- 0.8
epiPos <- 1.2
GenoToPheno <- data.frame(

rep(P[4:2], each = 3),
rep(P[5:7], times = 3),
c(P[4],P[4],epiNeg*P[4], P[3],P[3],epiNeg*P[3], epiPos*P[2],P[2],epiNeg*P[3]),
c(P[5],P[6],epiPos*P[7], P[5],P[6],P[7], epiNeg*P[5],epiNeg*P[6],epiNeg*P[6])

)
names(GenoToPheno) <- c("Fgeno", "Sgeno","Fpheno","Spheno")
Transition function:
GtoPfunction <- function(x)
{

pheno <- GenoToPheno[GenoToPheno[1] == x[1] & GenoToPheno[2] == x[2] ,3:4]
return(pheno)

}
Generating starting phenotypes:
phenoAll <- do.call(what = rbind, args = apply(X = genoAll, MARGIN = 1, FUN = GtoPfunction))
row.names(phenoAll) <- NULL
#
Merging genotype and phenotype
genoPhenoAll <- cbind(genoAll, phenoAll)
**
Iterations: inheriting from Chunk C8 with (major!) modifications
#
for(t in 1:tEnd) {
computing increments for each genotype (= their "progeny")

if (!is.element(el = t, set = t0)) { # checks whether we are in a "normal" or "disturbance" tick
in the following lines,
the do.call() calls compute the new sub-population (genotype) sizes
based on GROWTH rates, and round them
and then the difference with the current sub-pop size is taken.
the list() calls provide the updated sub-populations sizes after
application of the logistic growth equation, with s = 1:3 :
N(1,s) = N(0,s) * (1 + r(s) *(N(max) - N(0,tot)) / N(max))
where:
N(0,s) is provided by N[dim(N)[1],s+1]
r(s) is provided by individual genotype at locus R
N(max) is provided by P[1]
N(0,tot) is provided by N[dim(N)[1],5]

**
FECUNDITY step:
NEW in C9: each individual reproduces with a probability driven by its "F" genotype (and the population size)
and if it does reproduce, a new individual is drawn following H-W and added to the population
#
#
Function to determine success and assign genotype to progeny

repro <- function(y)
{

success <- sample(x = 1:0, size = 1, # here, the probability that an individual
prob = c(y[3]*(P[1]-N[dim(N)[1],8])/P[1], # reproduces is driven by its phenotype-defined r

1 - y[3]*(P[1]-N[dim(N)[1],8])/P[1]) # and the overall population's distance from K(max)
)

24

if (success == 1) # checks whether the individual successfully reproduced;
{ #

mate <- unlist(genoAll[sample(x = 1:nrow(genoAll), size = 1),1:2])# if so, ONE genotype is randomly drawn from the pop for reproduction
progenyProbsR <- genoTransitionR[genoTransitionR[,1] == y[1] & genoTransitionR[,2] == mate[1],3:5] # progeny genotype probabilities
progenyProbsS <- genoTransitionS[genoTransitionS[,1] == y[2] & genoTransitionS[,2] == mate[2],3:5] # are defined
progenyGeno <- c(sample(x = P[2:4], size = 1, prob = progenyProbsR), # and finally, a genotype is drawn

sample(x = P[5:7], size = 1, prob = progenyProbsS)) # for each locus
return(progenyGeno) # the function finally returns the progeny genotype, if reproduction has occurred

}
}

the repro() function needs to be applied to all genotypes, and the resulting progeny genotypes
stored in a table

newGenotypes <- apply(X = genoPhenoAll, MARGIN = 1, FUN = repro)
if (!is.null(newGenotypes)) # check that at least one offspring has been produced
{

newGenotypes.cleaned <- newGenotypes[-which(sapply(newGenotypes, is.null))]
newGenotypes.df <- data.frame(do.call(what = rbind, args = newGenotypes.cleaned))

} else { # if no offspring produced, make an empty data frame
newGenotypes.df <- data.frame(matrix(nrow = 0, ncol = 2))
}

names(newGenotypes.df) <- names(genoAll)
**
Mortality step:
this is flat-rate outside the disturbance ticks
individuals are randomly drawn to be kept

survivors <- sample(x = c(T,F), size = N[dim(N)[1], dim(N)[2]], replace = T, # randomly defining individuals that will survive
prob = c(survival[1], 1- survival[1])) # from the original population

genoAll.surviving <- genoAll[survivors,] # and keeping survivors
updating the genotype table for the new loop:

genoAll <- rbind(genoAll.surviving, newGenotypes.df)
generating the phenotype table for the new loop:

phenoAll <- do.call(what = rbind, args = apply(X = genoAll, MARGIN = 1, FUN = GtoPfunction))
row.names(phenoAll) <- NULL
genoPhenoAll <- cbind(genoAll,phenoAll)

recomputing genotype counts and total numbers
Nt <- c(sum(genoAll[1] == P[2]), # Notice that counting cannot be done with a

sum(genoAll[1] == P[3]), # table() command
sum(genoAll[1] == P[4]), # because it would misbehave in case
sum(genoAll[2] == P[5]), # one or more genotypes are missing
sum(genoAll[2] == P[6]), #
sum(genoAll[2] == P[7])) #

N<-rbind(N,NA)
N[dim(N)[1],]<-c(t,Nt,sum(Nt[1:3])) # updating the vector of sub-population and population sizes

}
#
**
disturbance step
at disturbance, only mortality occurs, with mortality rates that apply specifically to disturbance events
and depending on genotype at the "S" locus

else {
Function to determine survival success

surv <- function(y)
{

25

S <- sample(x = c(T,F), size = 1, prob = c(y[4], 1-y[4]))
return(S)

}
Application of the function to the "S" locus "genotypes"

survivorship <- unlist(apply(X = genoPhenoAll, MARGIN = 1, FUN = surv))
updating genoAll (keeping successfull survivors)
genoAll <- genoAll[survivorship,]
generating the phenotype table for the new loop:
phenoAll <- do.call(what = rbind,

args = apply(X = genoAll, MARGIN = 1, FUN = GtoPfunction))
row.names(phenoAll) <- NULL
genoPhenoAll <- cbind(genoAll,phenoAll)

recomputing genotype counts and total numbers
Nt <- c(sum(genoAll[1] == P[2]), # Notice that counting cannot be done with a

sum(genoAll[1] == P[3]), # table() command
sum(genoAll[1] == P[4]), # because it would misbehave in case
sum(genoAll[2] == P[5]), # one or more genotypes are missing
sum(genoAll[2] == P[6]), #
sum(genoAll[2] == P[7])) #

N<-rbind(N,NA)
N[dim(N)[1],]<-c(t,Nt,sum(Nt[1:3])) # updating the vector of sub-population and population sizes
}

computing ans storing TWO-LOCUS genotype frequencies
NtwoLocusLast <- data.frame(matrix(data = c(t,

sum(genoAll[1] == P[2] & genoAll[2] == P[7]), # number of RRSS
sum(genoAll[1] == P[2] & genoAll[2] == P[6]), # number of RRSs
sum(genoAll[1] == P[2] & genoAll[2] == P[5]), # number of RRss
sum(genoAll[1] == P[3] & genoAll[2] == P[7]), # number of RrSS
sum(genoAll[1] == P[3] & genoAll[2] == P[6]), # number of RrSs
sum(genoAll[1] == P[3] & genoAll[2] == P[5]), # number of Rrss
sum(genoAll[1] == P[4] & genoAll[2] == P[7]), # number of rrSS
sum(genoAll[1] == P[4] & genoAll[2] == P[6]), # number of rrSs
sum(genoAll[1] == P[4] & genoAll[2] == P[5])), # number of rrss

nrow = 1, ncol = 10))
names(NtwoLocusLast) <- names(NtwoLocus)
NtwoLocus <- rbind(NtwoLocus, NtwoLocusLast)

storing genotypes
if (t / recordSpacing == round(t / recordSpacing)) assign(x = paste0("genoAll_",t), value = genoAll)

}
Saving
save.image()

Plotting of single-locus genotype frequencies

plot
plot(Ntot~tick,data=N,type="l", ylab="population sizes", ylim=c(0,1.05*P[1]))
lines(N$tick,N$F1,col="blue",lwd=3)
lines(N$tick,N$F2,col="blue",lwd=2)
lines(N$tick,N$F3,col="blue",lwd=1)
lines(N$tick,N$S1,col="red",lwd=1, lty = "dashed")
lines(N$tick,N$S2,col="red",lwd=2, lty = "dashed")
lines(N$tick,N$S3,col="red",lwd=3, lty = "dashed")

26

abline(h=P[1],lty=2)
text(x = c(10000,10000), y = c(0.8*P[1],0.7*P[1]), labels = c("fecundity","survival"),

col = c("blue","red"), pos = 4)
text(x = 7000, y = 0.6*P[1], labels = "thicker line = higher value",

pos = 4, cex = 0.75)
lines(x = c(7500,8500), y = c(0.8*P[1],0.8*P[1]), col="blue", lwd = 2)
lines(x = c(7500,8500), y = c(0.7*P[1],0.7*P[1]), col="red", lty = "dashed", lwd = 2)

0 5000 10000 15000 20000

0
10

00
30

00
50

00

tick

po
pu

la
tio

n
si

ze
s fecundity

survival
thicker line = higher value

Plotting of two-locus genotype frequencies

plot
plot(Ntot~tick,data=N,type="l", ylab="population sizes", ylim=c(0,1.05*P[1]))
lines(NtwoLocus$tick,NtwoLocus$FFSS,col="blue",lwd=3)
lines(NtwoLocus$tick,NtwoLocus$FFSs,col="blue",lwd=2)
lines(NtwoLocus$tick,NtwoLocus$FFss,col="blue",lwd=1)
lines(NtwoLocus$tick,NtwoLocus$FfSS,col="blue",lwd=3, lty = "dashed")
lines(NtwoLocus$tick,NtwoLocus$FfSs,col="blue",lwd=2, lty = "dashed")
lines(NtwoLocus$tick,NtwoLocus$Ffss,col="blue",lwd=1, lty = "dashed")
lines(NtwoLocus$tick,NtwoLocus$ffSS,col="blue",lwd=3, lty = "dotted")
lines(NtwoLocus$tick,NtwoLocus$ffSs,col="blue",lwd=2, lty = "dotted")
lines(NtwoLocus$tick,NtwoLocus$ffss,col="blue",lwd=1, lty = "dotted")
abline(h=P[1],lty=2)
text(x = c(5000,5000), y = c(0.8*P[1],0.7*P[1]), labels = c("filled, dashed, dotted: F genotypes","thick, medium, thin: S genotypes"),

col = "blue", pos = 4)

27

0 5000 10000 15000 20000

0
10

00
30

00
50

00

tick

po
pu

la
tio

n
si

ze
s filled, dashed, dotted: F genotypes

thick, medium, thin: S genotypes

Computing and plotting of genetic diversity

Calculation of expected heterozygosity from genotype frequencies at the two loci
function for calculations
expHet <- function(x)
{

HeF <- 2* ((2*x[2] + x[3]) / (2 * sum(x[2:4]))) * (1 - ((2*x[2] + x[3]) / (2 * sum(x[2:4]))))
HeS <- 2* ((2*x[5] + x[6]) / (2 * sum(x[5:7]))) * (1 - ((2*x[5] + x[6]) / (2 * sum(x[5:7]))))
return(c(HeF,HeS))

}
application of the function
He.df <- data.frame(t(apply(X = N, MARGIN = 1, FUN = expHet)))
names(He.df) <- c("HeF","HeS")
plotting
plot((N$Ntot/P[1]) ~ N$tick,type="l", ylab="He",

xlab = "tick", main = "Expected heterozygosity")
lines(N$tick, He.df$HeF, col="blue",lwd=2)
lines(N$tick, He.df$HeS, col="red",lwd=2, lty = "dashed")
text(x = c(14000,14000), y = c(0.8,0.7), labels = c("fecundity","survival"),

col = c("blue","red"), pos = 4)
lines(x = c(11500,13500), y = c(0.8,0.8), col="blue", lwd = 2)
lines(x = c(11500,13500), y = c(0.7,0.7), col="red", lwd = 2, lty = "dashed")

28

0 5000 10000 15000 20000

0.
2

0.
4

0.
6

0.
8

Expected heterozygosity

tick

H
e

fecundity

survival

To do list

• compute & display allele frequencies
• find a way to compute slopes analytically

29

	R Markdown
	The Evolutionary Resilience Project
	Introducing mortality
	A first crude attempt: mortaility soon after growth
	A slightly more refined iteration: introducing random mating
	Back to resilience: including the effect of a disturbance
	A new generalisation: multiple disturbances

	A new step: modelling two independent loci driving survival and fecundity
	Plotting of single-locus genotype frequencies
	Plotting of two-locus genotype frequencies
	Computing and plotting of genetic diversity

	A new step: trait-trait trade-off through locus-locus epistasis
	Plotting of single-locus genotype frequencies
	Plotting of two-locus genotype frequencies
	Computing and plotting of genetic diversity

	To do list

